
Tetrahedron Letters,Vol.26,No.6,pp 761-764,1985 0040-4039185 $3.0~ + .oo 
Printed in Great Britain 01985 Pergamon Press Ltd. 

A CONVENIENT SYNTHESIS OF 2'-5' LINKED OLIGORIBONUCLEOTIDES 
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Summary: A general synthesis of 2'-5' linked oligoribonucleotides has been 
achieved on the basis of chemoselective formation of the 2'-5' internucleotide 
linkage using N-unblocked nucleosides. 

The 2'-5' linked oligoadenylates (2-5As) produced from ATP in the 

presence of double-stranded RNA by the (2'-5')A, synthetase in interferon- 

treated cells1 are biologically important substances playing a major role in 

the antiviral2 and antiproliferative 
3 

actions of interferon. Among them, the 

trimer A2'p5'A2'p5'A (2-5A core) (1) in sub-nanomolar concentrations inhibits 

the protein biosynthesis in BHK-2l-cells4 as well as the concanavalin A- 

stimulated DNA synthesis in mouse spleen cells. 5 The 5'-triphosphate, ppp- 

5'A2'p5'A2'p5'A (c), also acts as a strong inhibitor of the cell-free protein 

biosynthesis. 
4 

The 5'-monophosphate, p5'A2'p5'A2'p5'A (5), antagonizes the 

inhibitory effect of ppp5'A2'p5'A2'p5'A.6 Furthermore, the recent investiga- 

tion revealed that certain kinds of 2-5A analogs possessing artificial nucleo- 

sides at the 2'-terminus significantly enhance the biological activities. 7 

Thus these observations have stimulated the development of effective chemical 

synthesis to supply not only large amounts of 2-5A derivatives, because of the 

limited availability in vivo, but also various kinds of artificial analogs 

promising to give new impetus to virus therapy. This paper describes a facile 

entry to the 2-5A derivatives and related compounds satisfying these demands, 

which relies on the recently developed chemoselective formation of an inter- 

nucleotide bond using N-unprotected nucleosides via hydroxyl activation a shown _ 
in the following scheme. 

1. Nu’OH, t-CqHgMgCL 

NuOH: nucleosides 

Ar : phenyl, o-chlorophenyl, etc. 
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The synthesis of the 2-5A core ,1 was accomplished as follows. The 

3',5'-di-c-protected adenosine 7' (1.8 mmol) was treated in THF with an 

equivalent of t-butylmagnesium chloride followed by o-chlorophenyl p-nitro- 

phenyl phosphorochloridate (1.8 mmol) (25 OC, 2 h) to give the reactive 

phosphorotriester intermediate ljl, which, without isolation, was condensed with 

the magnesium alkoxide of 9 (1.6 mmol) (25 OC, 12 h) in a 1:5 mixture of DMF 

and THF. After aqueous workup, the product was detritylated by dichloroacetic 

acid in dichloromethane (25 OC, 2 h) to afford the diadenosine phosphate 13 in 

70% isolated yield. This overall conversion formed no isomeric 3'-5' linked 

nucleotide. The extension of the dimer 13 to the trimer 14 in 63% (71% con- - 
version) yield was performed by a similar reaction sequence using 1.5 equiv 

of the phosphorotriester intermediate 8 to 13. Deprotection of 14 by succes- 

sive treatments at ambient temperature with (1) 1,1,3,3_tetramethylguanidium 

syn-4-nitrobenzaldoximate (NBO) in aqueous dioxane (22 h),l' (2) 2% ammonia 

(2 h), and (3) tetrabutylammonium fluoride (TBAF) in THF (18 h) produced in 

75% yield the 2-5A core 1 showing identical characteristics with the authentic 

sample in HPLC, electrophoresis, and enzymatic hydrolysis. In a similar 
11 manner, the large-scale (l-2 mmol) synthesis of heterotrimeric analogs, 

A2'p5'A2'p5'C (2), A2'p5'A2'p5'G (z), and A2'p5'A2'p5'U ($), was achieved in 

good yields by replacing 9 in the first condensation by 12, 12, and 12, 

respectively. The structures of these unnatural derivatives were confirmed by 

enzymatic digestion. Snake venom phosphodiesterase in 0.05 11 aqueous tetra- 

ethylammonium hydrogencarbonate solution (pH 7.5) hydrolyzed completely these 

nucleotides within 11 h at 25 'C to afford in quantitative yields mixtures of 

adenosine, 5'-AMP, and 5'-monophosphate of the 2'-terminal nucleoside in 

reasonable ratios: 2, 0.94/1.00/1.14; 3, 0.97/1.02/1.00; 4_, 0.98/1.15/1.00. 

On the other hand, no degradation was observed by 17-h incubation with ribo- 

nuclease II2 in 0.01 E CH3COOH-CH3COOK buffer solution (pH 4.5) at 37 'C. 

2,6-Lutidine-assisted reaction of the protected 2-5A core 14 and 3 equiv 

of (CC13CH20)2PC1 in THF (-78 "C, 1 h) followed by oxidation with iodine-H20 

in THF-ether (25 "C, 15 min)12 gave 1,5 in 80% yield, which was deblocked by 

treatments with (1) Zn/Cu couple in the presence of acetylacetone in DMF (60 

"C, 6 h),12 (2) Chelex 100 resin (NH4+ form), (3) NBO (25 'C, 18 h), (4) 2% 

ammonia (25 OC, 3 h), and (5) TBAF in THF (25 OC, 16 h), and then was purified 

by passage through a DEAE Cellulose (HC03- form) column using 0.01-0.4 g 

(linear gradient) triethylammonium hydrogencarbonate eluent (pH 7.6), furnish- 

ing in 50% isolated yield (ca. 65% yield by HPLC assay) p5'A2'p5'A2'p5'A (5) 

identical in all respects with the authentic sample. The trinucleotide 5, 

could be converted in 32% yield to ppp5'A2'p5'A2'p5'A (6) by treatment with 5 

equiv of N,N'-carbonyldiimidazole in the presence of triethylamine and tri- 

octylamine (25 OC, 1 h) followed by 10 equiv of tributylammonium pyrophosphate 

(25 OC, 15 h) in DMF.13 

The present method, in comparison with the existing entries, 
9,12-14 has 

the eminent practicability such as (1) use of the inexpensive _ N-unprotected 
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nucleosides and condensing agents, (2) operational simplicity due to one-pot 

formation of the internucleotide linkage, and (3) generality producing a wide 

range of the artificial analogs as demonstrated above. 
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